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The two stream instability is examined for the case 

of an ion beam traversing a plasma. 

for linearized, longitudinal waves in a plasma where collisions 

are negligible is used to find the restrictions on beam velocity, 

The dispersion equation 

temperature and density which will  lead to growing waves. 
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1. INTRODUCTION 

The two s t ream instability phenomenon, for  longitudinal waves, was 

1 first discussed by Pe i rce  for the case of an electron beam moving through 

a background of cold - ions. Subsequently, Boyd, Gould and Field 

out experiments on this instability for  the case  of electrons traversing a 

2 car r ied  

neutral  plasma, explaining their observations in t e r m s  of the interaction 

between the streaming electrons and the plasma electrons. The importance 

of the Pe i rce  instability for  a current-carrying plasma, in which, again, 
3 electrons s t r eam past - ions, was pointed out by Buneman, and the effects 

4 
of non-zero plasma temperature in this case were studied by Jackson, by 

Bernstein and Kulsrud 5 6 and by F r i ed  and Gould. The current  availability 
7 of quiescent cesium plasmas and of ion beam sources,8 the la t te r  developed 

in conjunction with ion propulsion studies, makes quite practical  the experi- 

mental investigation of this instability in a plasma t raversed  by an - ion beam. 

In contrast  to the other configurations, this one involves principally 

ion dynamics; the phase velocity of the waves in question is, typically, so 

much smal le r  than that of the electrons that the latter can be t reated as a 

neutralizing negative fluid, Thus, it represents  the opposite extreme from 

the experiment of Boyd, Gould and Field, where the electron dynamics 

must  be treated in detail while that of the ions can be ignored. In contrast 

t o  both of these situations, the Buneman case  requires  cor rec t  treatment 

of the dynamics of both species. In a sense, however, the ion beam problem 

is more  complicated than either of the other two cases ,  since here  the 

dynamics of three "species" of particles enter (plasma ions, beam ions, and 
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1 .  electrons) whereas the others involve only two species, (beam electrons 

and plasma electrons in the one case, plasma electrons and ions i n  the 

other). 

The well known dispersion relation for  linearized longitudinal waves 

relates  the phase velocity, u = w/k,  a d  wave number, k, to the parameters  

of the problem: densities, temperatures and beam velocity. Unfortunately, 

the (numerical) investigation of these relations is one of that large c lass  of 
I 

tasks which are trivial  in principal but not in practice, owing to the multi- 

plicity of parameters  and variables involved and to the unpleasant nature of 

the functions ( e r r o r  functions of complex argument). Thus, after defining 

the parameters  and discussing the dispersion equation in Section 11, we 

1 -  indicate briefly, in Section 111, the methods used in finding the stability 

limits. The results, in graphical form are given in Figs. 3 through 5 ; 

rough analytic approximations to these curves, derived f rom the use of 

asymptotic expressions, are discussed in Section IV. Constraints imposed 

I by ion beam dynamics are  examined briefly i n  Section V, and the results are 

expressed, in Fig. 6, in a form convenient for comparison with experiment. 

-3 -  
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11. THE DISPERSION EQUATION 

The dielectric constant for  longitudinal waves in a multi- species plasma 
9 

in which collisions can be neglected is given by 

-1 
~ . ( k ,  - w) = 1 - a Z (wt/k2) dvk -- V f v a - -  (v)(k - v - W) 9 

where species a has distribution function f a -  (v) and plasma frequency 

w = ( 4 ~ n  q 

of the response of the plasma to  an external longitudinal electric field, 

- E = -V+, using the Vlasov o r  correlationless kinetic equation to describe the 

plasma dynamics. 

frequency, w,  of waves of wave number - k ,  is simply 

This follows immediately f rom a linearized treatment 
a a a  

The dispersion equation, giving, for  example, the 

E (k, W) = 0 

Specializing to the case of Maxwellian distributions, 

- 3 / 2  a -3 
fa a = = 

w e  have the dispersion equation 

10 
where Z' is the derivative of the plasma dispersion function, 

and 
2 2  k2 = 2 w  /aa = Debye wavenumber for  species a. a a 

(3) 
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F o r  the ion beam-plasma configuration, (4) becomes, in the plasma 

re s t  f r ame  

u P w/ka v * vb/'Li i where 

are the dimensionless phase velocity and drift velocity, and the subscripts 

i, b, and e denote plasma ions, beam ions, and electrons, respectively. 

Both beam and plasma ions have been assumed univalent. It is convenient 

to choose units in which ai, ki, and n. a r e  unity, and to define 
1 

n = n / n  b i  a = a . /ab  1 T = Ti/Te . (7) 

Specializing a l so  to the case  where the ions of the beam and plasma have 

equal mass, we have finally 

( 8 )  
2k 2 2  /ki = D(u) 5 Z'(u) t n a  2 Z'  [ a(u- V)] -2(nt l )T.  

Here we have also assumed the phase velocity to  be small  compared to ae 

and therefore have se t  Zt(w/kae) Z'(0) = -2. 

F o r  given k and given values of n, a, V, and T, (8) can be solved, 

in principle, to give the phase velocity, u. In absence of a beam (n = 0 or  

V = 0), a l l  solutions of (8) have Imu C 0, corresponding to Landau-damped 

waves. F o r  n f 0 ,  there  is a cri t ical  value of V for which (8) f i r s t  has a 

solution with real u; for  la rger  V, there a r e  unstable solutions, with 

h u  > 0. Thus, to find the stability limit in the n, a, V parameter  space 

we look fo r  S o X , + - - q  of (8) with u reel. f. convenicnt wzy of doing this is 
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to use an on-line computing facility1 

varying the parameters and observing the mapping of the complex u plane 

generated by D(u), it is easy to see when D(u) = 0 has real roots, and to 

determine the parameter values to any desired accuracy. 

which includes graphical displays. By 
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111. DETERMINATION OF STABILITY LIMITS 

Consider the mapping, w = D(u), f rom the u plane to the w plane, 

with D defined by (8). For  a stable case, e. g. V = 0, the curve, C, 

which is the map of the real u axis, is as shown in Fig. l a .  

that (8) has no solution with real  k and rea l  u; since the upper half of the 

u plane maps into the interior of the closed curve C, it is also clear that 

there  a r e  no growing waves. With fixed n, a, T and increasing V, C 

evolves as shown in Fig. l b  until, for a cri t ical  value, V = VI,  its inter-  

section with the real  w axis reaches the origin. 

of V, for  this n, T and a, for  which the waves a r e  unstable. Since both 

ReD and ImD vanish, the instability occurs f i r s t  at k = 0. As V increases 

further,  the origin in the w plane becomes, and remains, an interior point 

It is c lear  

V is the minimum value 1 

of the curve C, as shown in F i g .  I C  until a second cr i t ical  value V = V2, 

is reached, when C again passes through the origin. Fo r  V > V2, the 

curve C no longer encircles the origin (Fig. Id). Thus, the waves a r e  

unstable for  V < V < V and a re  stable otherwise. 1 2 

Once this global character of the stability problem is established, we 

can determine the stability limits with any desired accuracy by simply 

examining the map, not of the whole rea l  u axis, but only of that part  which 

maps into the vicinity of the origin, a s  illustrated in Fig.2. 

this procedure keeping three of the four parameters  (n, a, V, T) fixed and 

varying the fourth gives contour lines for the stability l imits such a s  those 

shown in Figs. 3 and 4. 

like the middle curve of Fig. 2 is easily found; the result  i s  shown in Fig. 5. 

Carrying out 

The value of u which maps into w = 0 in a case 
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I 

Y 
t w plane I I -  

Fig. 1. Mapping, in the w plane, of the rea l  u axis under the transformation 
w = D(u), given by Eq. ( 8 ) .  As u t r ave r ses  the r ea l  axis, f rom left to 
right, w t r ave r ses  the curve C in the direction shown by the arrow. 
All  plots a r e  for  the case  n = 0.5, a = 5, T = 1, but with various values 
of the ion beam velocity, V, as follows: a) V = 0, i. e. , no beam is 
present. b) V = 0.7. The curve C does not encircle the origin since 
the beam is not yet fast enough to be unstable. c )  V = 1. 75. 
C now encircles the origin, showing that V exceeds the threshold for 
instability. It is hard to  tel l  whether o r  not C encircles 
the origin, but by mapping a restr ic ted (suitably chosen) portion of the 
u-axis we get, in effect, a magnified version (enlarged by a factor  of 
2 0 )  of the portions of C in  the vicinity of the origin, f rom which i t  is 
c l ea r  that for  this value of V the beam is stable. 
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n = 0.5 
T =  1.0 
v =  1.75 

I I I 
I I i 

-2 2 

-- 
w plane . 

Fig. 2. Mapping of a restricted portion of the r e a l  u axis, 
showing how a precise root of the dispersion equation is determined. 
Here n = 0.5,  T = 1.0 and V = 1.75 are fixed and a is varied. Fo r  
a = 3. 3 it  is clear  that we have a stable configuration and that a must 
be increased to reach the stability l imit ,  
large,  but interpolation on the intercepts of these curves with the x or 
y axes leads to  a = 3.39, which proves to  be correct  to three significant 
f igures.  
course,  determine a with any desired precision. 

1 4 u 6 1. 3 

The value a = 3.  5 is too 

By mapping a smaller portion of the u-axis, we could, of 
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2 4 
Fig. 3 .  Stability limit curves for a plasma with equal electron and ion 

temperatures,  

velocity to a i' 
ai to  the beam thermal velocity, a = a./ab. 

beam density to ion plasma density. 
the curve corresponds to  stability, and the region above the curve 

corresponds to growing waves. 

T = Ti/Te = 1. 

the plasma ion thermal velocity. 

V is the ratio of ion beam mean 
a is the ratio of 

n is the ratio of ion 
1 
For given n, the region below 
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i 
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T= 0.1 

1 I 2 3 4 5 
V 

Fig. 4. Stability limit curves for T = 0.5 and 0.1 and n = 0.5  and 1. 0. 
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3 

U 

t 1 I I 1 1 I 

b 

4 I I 
1 

Fig. 5. Phase velocity, u, vs mean ion beam velocity f o r  a marginally 
stable configuration with T = 1 and several  values of n. 
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Although this point-by-point procedure can always be used when 

necessary, it i s  more  convenient t o  determine one of the curves in Figs.3 

through 5 in a single process when possible. To do this, we set 

Z'(u) = R(u) t i I (u)  

and rewrite (8) as the two equations 

- 2 ( n t l ) T  - R(u) - R [a(V-u)] B(u) = - 
I ( 4  

2 n a  = I ( ~ ) / I  [ a ( v - u ) ]  

(9) 

The function 

is, for positive x ,  a monotone decreasing function of x ,  taking on all 

values, t 00 > L > -00 as x varies f rom 0 to 00. Thus, we can 

1) Choose u. 

2) Calculate B. 

3) 

4) Use (11) to calculate a. 

5) Determine V = x/atu. 

Use (10) to find x = a(V-u) . 

Doing this simultaneously with a number of values of u gives, directly, 

a(u)  and V(u), and hence a ( V )  and u(V). 

In deriving ( 8 ) ,  we assumed T = Ti/Te fixed. In some cases,  this 

probably corresponds to the experimental situation, e.  g., a quiescent 
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cesium plasma where the ion and electron temperatures a r e  determined by 

the hot tungsten plate which generates the plasma so that Ti/Te = 1, while 

the ions of the injected beam have their  own temperature Tb # Ti. 

different possibility is to assume that T 

A 

is a weighted mean, e 

= n T t n.T. = n.T.(1 + n / a  2 b b  1 1  1 1  

so that 

and instead of (8) we  have 

2 2 2 - I  2k2 = B(u) I Z'(u) + n a  Z r [  a ( u -  V)] - 2(n t l )  ( l t n / a  ) 

The resultant stability limit curves a r e  similar to those shown in Figs. 3 

and 4, differing from these chiefly in having a second branch a t  large V 

and small a. 

is completely symmetric under the interchange of beam ions and plasma 

Physically, this corresponds to the fact that (13), unlike (8), 

ions, so that either of the two ion species may be considered as the "beam". 

Algebraically, this leads to the following property of (13): If (n, a, V, u) 

is a solution of (13), so  is (n', a', V', u') with 

-14- 
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IV. ASYMPTOTIC FORMS 

For  very large V, we see  from Figs. 3 and 5 that a and u a r e  a lso 

large. This suggests using asymptotic expansions for  ReZ in (8): 

n D(u) = l t  '2 - 2(n t l )T  = 0 
U (U-V) 

If [u-V] << u, this gives 

The imaginary part of (8) i s  then 

2 2  3 -a g 2 
-U u e  = na g e  

o r  2 2 2  3 
u = a g t log(u/na g) . 

To leading order, 

and so 

V = (a t 1) 7 Z n / ( n t l ) T  . 
This provides a rough approximation to the right hand portions of the curves 

in Fig. 3. 

For  very small  V, a is again large, but u is small, so we use an 

asymptotic approximation for  ReZ' [ a(u-V)] but replace Z'(u) by Z'(0) = -2. 

With 

x = v - u  

-15- 
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n/x2 - 2(ntl)T = 2 

2 
In the equation ImD = 0 we let e-u = 1,  giving 

2 2  3 -a  x u = n a  x e  

This shows that each curve of V v s  a with n fixed has an asymptote at 

V = d-), which is also consistent with the curves in Fig. 3. 
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V. ION BEAM DYNAMICS 

We have expressed the results heretofore in t e rms  of the parameters  

most convenient for  the stability analysis. However, these are not necessarily 

suitable fo r  analysis of experiments with a beam-plasma system. F o r  example, 

if ions a r e  accelerated by a grid system and sent into a quiescent plasma, i t  i s  

difficult to vary V holding a fixed, o r  vice versa,  since the two a r e  coupled 

by the dynamics of the acceleration process. Thus, given an initial velocity 

distribution for the beam ions and a net accelerating potential, t$, we must 

solve for the average velocity of the accelerated ions and use this for  the beam 

velocity, 

in fact, be the minimum velocity of the beam ions. Likewise, we must use 

the thermal  width of the accelerated beam as the ab of Section LI; in  general 

it will  be smaller than that of the ion source. 

example of these considerations. 

of Section 11. It wi l l  differ somewhat f rom m, which will, vb’ 

W e  discuss briefly an elementary 

At the ion beam source, the distribution function of beam ions is assumed 

to  be a half-Maxwellian 

v > o  

v c o  
L 

since ions with v < 0 a r e  readsorbed by the source. If the ions fall through 

a potential difference 

A+ = Mvl/2q 2 , 

their  distribution function will be, according to the time independent Vlasov 

-17-  
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equation, 

f rom which it follows that the i r  mean velocity is 

2 
CV) = !dvvfl(v)/S'dvfl(v) = aoE(v 1 0  /a ) E(x) f e-x / G e r f c t x )  

and that the i r  mean thermal  velocity is 

2 2 1 /'2 1 / 2  
a = 4.2 (<v > - w, ) b 

where 

and 

F(x) = 1 t 2 [x-E(x)] E(x) 

2 dt exp(-t ) . Srn er fc(z)  = ( 2 / G )  

z 

That is to say, the MaxweUian "equivalent" to the beam is 

2 2 .  
exp\-(v- <v>) /ab ) / 6 a b  . 

The parameters ,  V = <v> /ai and a = a./ab, of our stability analysis a r e  

therefore given by 

1 

In an  experiment, the density ratio of beam to plasma, n, and the 

accelerating pdtential, A$, can be easily varied, while Ti, To, and Te a r e  

held fixed. It is therefore convenient to find the stability l imits  in  an n, A+ 

' 
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plane, which we do a s  follows. 

(v 1 e 
we can, as in Section III, determine the value of n corresponding to  the 

stability limit. The resulting plot of n vs  (qLS+/Ti)1’2 is shown in Fig. 6, 

With Ti, To, and A+ given, v1 is known 

is also given, then = 4- and (17) determines V and a. If T 

for several  values of a /ai and a . /ao .  
e 1 

-19- 
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0.5 

0.4 - 

0.3 - 

0.2 

0.1 

n 
- 

- 

OO 1 2 3 4 
V, /ai 

Fig. 6. Stability limit curves taking into account ion beam dynamics. The 

ordinate is n, the ratio of ion beam density to plasma ion density. 

The absiccae is the ratio of minimum beam velocity to ion thermal  

velocity or, equivalently? d$z&/ T 

potential for  the ion beam. 

where A+ is the net accelerating i '  
Results fo r  three values of the ratio 

(ao/ai) 2 = (ion source temperature/plasma ion temperature) and two 

values of the ratio T = (plasma ion temperature/plasma electron 

temperature) are plotted. 

3 
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VI. CONCLUSIONS AND DISCUSSION OF RESULTS 

The stability limit curves shown in Figs. 3 and 4 a r e  based on a 

collisionless plasma with Maxwellian distribution functions for  both beam 

and plasma. 

the distribution functions are similar t o  Maxwellians and the collision 

They should be qualitatively correct  for actual plasmas where 

frequencies are small compared to the wave frequency, a. 

curves apply strictly to the case k = 0, they are valid for  k << ki = Debye 

wave number of the plasma ions. 

Although the 

In a rea l  plasma, the minimum wave 

number, k 

dimensions, 

then be given by w = k u, where u, as shown in Fig. 5, is approximately 

proportional to the drift velocity. 

will be set by some physical consideration such as plasma min' 

The wave frequency of the marginally unstable waves will 

min 

F rom Figs. 3 and 4 we see that fo r  given n there is a minimum, a mint 
(and hence a maximum beam velocity spread) in order  that any wave be 

unstable. 

growth due to the two s t ream instability. 

velocity must be neither too large nor too small if  the waves a r e  to be unstable. 

The fact that the curves have a shape suggesting a broad resonance, centered 

between V = 1. 5 and 2, may be attributed to the fact that in the equilibrium 

plasma the ion acoustic waves have a phase velocity of the order  of ion thermal  

velocity, and, for T = 1, a r e  strongly damped. (Thus, the least  damped root 

of (8) for n = V = k = 0, T = 1 is at  u * 1.5 - i 0.6, so we expect the maxi- 

mum interaction with the beam to occur at  V of order  1.5 and to be quite 

broad. ) F o r  la rger  Te/Ti, the ion acoustic waves are less damped , which is 

F o r  smaller a, the Landau damping is apparently l a rge r  than the 

Moreover, for a > amin, the beam 

6 

6 
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reflected in the lower a threshold of Fig. 4 and the sharper  nature of the 

resonance for T = 0.5. 

root of (8) is u = 1 . 7  - i0 .4 . )  

(For  n = k = V = 0 and T = 0.5, the least damped 

It should be emphasized that in a laboratory plasma, as opposed to 

our idealized, uniform, homogeneous model, other instabilities may be 

more  important than the longitudinal modes considered here.  Fo r  example, 

if the plasma is confined by an external magnetic field, as in the cesium 

plasma devices, instabilities associated with gradients of density a r e  

commonly observed. 

unstable modes is necessary in  order  t o  predict which will actualy dominate 

A separate study of each of these other possibly 

for  any given choice of the parameters of the system. 

We a r e  indebted to A. Klimeck and J. Craft f o r  assistance with the 

numerical calculations, most of which were done with the TRW On-Line 

Computer. This work was partially supported by the TRW Independent 

Research Program, the Office of Naval Research, and the National 

Aeronautics and Space Administration. 
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1. 

FIG UR ES 

Mapping, in the w plane, of the real u axis under the transformation 

w = D(u), given by Eq. (8). 

right, w t raverses  the curve C in the direction shown by the arrow. 

All plots are for  the case  n = 0.5, a = 5, 

values of the ion beam velocity, V, as follows: a) V = 0, i. e.,  no 

beam is present. b) V = 0.7.  The curve C does not encircle the 

origin since the beam is not yet fast  enough to  be unstable. c )  V = 1.75. 

The curve C now encircles the origin, showing that V exceeds the 

A s  u t raverses  the real axis, f rom left to 

T = 1, but with various 

threshold for  instability. d) V = 3 . 0 .  It is hard to  tell whether o r  

not C encricles the origin, but by mapping a restr ic ted (suitably 

chosen) portion of the u-axis we get, in  effect, a magnified version 

(enlarged by a factor 20) of the portions of C in  the vicinity of the 

origin, f rom which it i s  c lear  that f o r  this value of V the beam is 

stable. 

2. Mapping of a restr ic ted portion of the real u axis, 

showing how a precise root of the dispersion equation is determined. 

Here n = 0 . 5 ,  T = 1 . 0  and V = 1.75 a r e  fixed and a is varied. F o r  

a = 3. 3 it is c lear  that we have a stable configuration and that a must 

be increased to  reach the stability limit. The value a = 3 . 5  is too 

large,  but interpolation on the intercepts of these curves with the x 

o r  y axes leads t o  a = 3 . 3 9 ,  which proves to be cor rec t  to three 

significant figures. By mapping a smaller portion of the u-axis, we 

could, of course, determine a with any desired precision. 

1 6  u \< 1. 3 

-23 -  



9801 -6015-RU-000 

FIGURES 
(cont'd) 

3. Stability limit curves  for a plasma with equal electron and ion 

temperatures,  T = T . / T  = 1. V is the ratio of ion beam mean 

velocity to  a 

a. to the beam thermal velocity, a = a./a 

beam density to  ion plasma density. 

i e  

the plasma ion thermal  velocity. a is the ratio of i' 

n is the ratio of ion 
1 1 b' 

F o r  given n, the region below 

the curve corresponds to  stability, and the region above the curve 

corresponds to growing waves. 

4. Stability limit curves for  T = 0.5, and 0. 1 and n = 0. 5 and 1. 0. 

5. Phase velocity, u, vs mean ion beam velocity for  a marginally 

stable configuration with T = 1 and several  values of n. 

6. Stability l imit  curves taking into account ion beam dynamics. The 

ordinate is n, the ratio of ion beam density to  plasma ion density. 

The absiccae is the ratio of minimum beam velocity to  ion thermal  

velocity or,  equivalently, &-, where A+ is the net accelerating 

potential for the ion beam. 

(ao/ai) 

1 

Results for three values of the ratio 
2 = (ion source ternperature/plasma ion temperature) and two 

values of the ratio T = (plasma ion temperature/plasma electron 

temperature) a r e  plotted. 
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